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AN INTERESTING class of problems are those involv- 
ing unknown, or ‘free’ boundaries. Steady-state and 
moving free boundaries have been studied in con- 
nection with solidification and melting processes [ 11, 
flows in porous media [Z], design of tool shapes for 
electrochemical machining [3], prediction of shapes of 
jets and bubbles [4], as well as many other types of 
inverse problems. In the last decade there has been an 
increased effort toward the development of numerical 
inverse methods. An example is in ref. [S] where a 
numerical solution was obtained for a steady-state free 
boundary solidification problem that had been solved 
analytically in ref. [6]. Since the presence of an 
unknown boundary usually provides difficulties in 
both numerical and analytical methods, advances in 
either of these approaches, or in their combination, are 
welcome additions to the development of this area. 
Analytical solutions provide a very helpful insight into 
free boundary behavior and provide a comparison for 
numerical results. 
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Abstract-The two-dimensional steady-state shape of a solidified region, such as a frost layer, was determined 
analytically for formation on a plate that is convectively cooled. The nonuniform shape ofthe layer is produced 
by exposure to a spatially nonuniform distribution of radiant energy. For high convective cooling the cooled 
wall approaches a uniform temperature, and an exact solution is obtained for the free boundary shape. For a 
lesser amount of convective cooling, the variation in temperature along the cooled boundary is treated by a 
boundary perturbation method. Some illustrative examples are given that show the effects of nonuniform 
heating and the magnitude of convective heat transfer at the cooled wall. Only one boundary condition is 
approximated by the perturbation solution ; all of the other boundary conditions are satisfied exactly. The 
calculated results given here were found to satisfy the approximate boundary condition within a very small 

error. 

INTRODUCTION 

In the present work a few mathematical ideas will be 
combined to obtain the steady response of a solidified 
layer to imposed, spatially variable, radiative heating 
along one face. The other side of the layer is being 
cooled by convection, and thus the temperature 
distribution along this boundary is unknown and will 
be determined in conjunction with finding the free 
boundary shape. The analytical procedure involves 
inverting the problem so that the physical coordinates 
are to be found as dependent variables of the 
temperature and a heat flow function orthogonal to the 
constant temperature lines. This transformation maps 
the solidified region into a region that is approxi- 
mately rectangular ; if the cooled wall were at uniform 
temperature the region would be a rectangle. A 
boundary perturbation method [A was applied to 

transfer the conditions to a fully rectangular shape, and 
an analytical solution was then obtained. 

The physical system is most easily described by 
referring to Fig. l(a). The solidified region could be a 
frost layer formed on a cooled surface in the presence of 
incident radiation, or a layer could be machined by 
application of radiative energy. Another interpretation 
would be finding the shape of a layer that is to be 
controlled at a uniform surface temperature while 
exposed to nonuniform heating and being convectively 
cooled at the other surface. A particular problem of this 
type was solved by conformal mapping in ref. [S]. 
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FIG. 1. Solidikd region on convectively cooled boundary. 
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NOMENCLATURE 

A dimensionless length and dimensionless Y,, E; zeroth- and first-order terms in expansion 

parameter, (aq,, ,Mk(rr - &)I = h,, of Y(Y, @) 
a width of solidified region Y, thickness, k(t, - t,)/aq,,,. 
C,, E, coefficients in Fourier series solution 
h convective heat transfer coefficient at 

cooled boundary 
K dimensionless parameter, k/by, 

Greek symbols 

k thermal conductivity of solidified material 
a radiant absorptivity of surface 

n normal to solidification interface, 
0 angle between interface normal and y-axis 

N = uly, 
@ potential function, (tr - t)/(t, - t,) 

Q dimensionless heat flux, qr/qr,m 
Y heat flow function orthogonal to CD 

4r incident radiant heat flux ; q,, ,,,, integrated 
mean value of q, 

S dimensionless coordinate along Subscripts 
solidification interface C at coolant temperature 

t temperature f at solidification temperature 
X,, X, zeroth- and first-order terms in m mean value 

expansion of X(Y, @) r radiant 
x, y coordinates in physical plane; X = x/y,, S at solidification interface 

y = YIY, W at cooled wall of layer. 

ANALYSIS provide both the temperature and its normal derivative 
along one boundary. It is the shape of the solidification 

Problem description 
The solidified region is shown in Fig. l(a). It has a 

shape that depends upon an incident distribution of 
radiant energy that varies along the x-direction. The 
absorbed energy is conducted through the solidified 
region and removed from the cooled boundary by 
convection with a constant heat transfer coefficient to a 
coolant at t,. The side walls can be either insulated or 
represent symmetry planes for a periodic variation of 
q,(x). These conditions provide the following boundary 
conditions. At the side boundaries, 

at 
,,=O x=O,a y>O. 

At the solidification interface, 

t = t, 

k g = aq,(x) cos 8. 

At the cooled boundary, 

k; = h[t,(x)-t,]. (4) 

Within the solidified region the heat conduction 
equation applies 

~+e,o. 
aY* 

(5) 

It is noted that the boundary conditions are 
overspecified in the sense that equations (2) and (3) 

interface that is unknown. The convective condition, 
equation (4), contains the wall temperature distribution 
which is also an unknown and will be determined 
during the analytical solution that follows. 

To place the equations in dimensionless form, a mean 
incident heat flux is defined as 

a., = ; ; q,(x) dx. s (6) 

If the incident heating is uniform at qr,,, the solidified 
layer will have a uniform thickness. When the 
convection coefficient h -+ cc then t, + t, and this layer 
thickness is 

kk - t,) 
y, = --. 

as., 
(7) 

This will be used as a reference dimension in what 
follows. 

Region in potential plane 
The analysis is carried out by mapping the solidified 

region into a potential plane. First the region is placed 
in dimensionless form as shown in Fig. l(b). A 
temperature potential function is defined by the ratio @ 
= (tf - t)/(t, - t,); since t, < t < t,, then 0 6 @ < 1. 
Then using the quantities defined in the Nomenclature, 
equation (1) becomes along the side walls 

am 
ax=O X=O,A Y>O. 
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Equations (2) and (3) are 

cg=o (9) 

- ; = Q(X) cos 8. (10) 

At the convectively cooled wall 

aa -- 
ay, = f [l -qh.(X)-J. 

The heat conduction equation becomes 

(11) 

g+g=o. (12) 

Since heat flow is normal to constant temperature 
lines, a heat flow function Y can be defined, where lines 
of constant Y and @form an orthogonal grid. Each pair 
of Y lines bounds a fixed amount of heat flow. Now 
consider a potential plane as shown in Fig. 2. Since 
cb = 0 along the solidification boundary, the boundary 
% is along the Y-axis. Along the cooled wall the Q 
is an unknown variable that will be between 0 and 
1; hence the curve E has an unknown shape. When 
h + co the cooled wall will be at t, which gives the 
upper limit dashed boun+ry along which @, = 1. 
The boundaries 14 and 23 have no heat crossing 
them; hence they are along constant heat flow lines. 

The analysis will now proceed by letting X, Y be 
dependent variables of Y, aS. Since Y, Cp are analytic 
functions of X, Y, then X, Y are conjugate harmonic 
functions of Y, Q, and satisfy, 

2 + 2 = 0, where { = X or K (13) 

To solve these equations the boundary conditions for 
X and/or Y are needdd for the region in Fig 2. Along 14, 
X = 0 and along 23, X = A. On the interface 34, 

aY 

I( 
m as ~Y~IV -= 

ax, asax+5;;rax,. > 
(14) 

Then along 3, which is at constant temperature, the 
Cauchy-Rieman equations give a#/laN = - aY/aS 
and awfalv = aalas = 0. Itfollows thatwith as/ax = 
- l/cos 8, and by use of equation (lo), 

ay 
- =-Q(X). >Y I 

FIG. 2. Region in potential plane. 

(15) 

LettingY = Oat X = ~,t~sinte~at~ togivealongz, 

Y(X) = 
I 

A Q(X) dX. (16) 
x 

Then by use of equation (6) placed in dimensionless 
form, the maximum Y is 

Y _= ‘Q(X)dX=A. 
s 

(17) 
0 

Thus the width of the region in Fig. 2is A. Equation (16) 
provides the boundary condition between X and Y 
along Z?Z 

Next the boundary condition will be considered 
along the cooled boundary a A heat flow channel 
between two almost equal Y lines is shown shaded in 
Fig. l(b). A heat balance on this channel gives 

aq,(x)AXI, = hAXl,[t,,,(x) - t,]. 

Equation( 15) is used on the LHS and the result is placed 
in dimensionless form to obtain (note from the shaded 
region mapped into Fig. 2 that AY(, = AY],), 

-KAYI, = -KAY], = AX&J1 -@,(X)-J (18) 

Along the cooled walf the X is a function of both Y and 
@ so that 

Also along the wall, Y is zero so that 

Applying the Cauchy-Riemann conditions yields 
along w, 

ax ax dQ, 

=, I I =%,a 

This is substituted into equation (19) to obtain 

Then the boundary condition equation (18) becomes 

The curved upper boundary Gin the potential plane 
in Fig 2 has an unknown shape. When Ii 4 m this curve 
becomes the upper dashed straight line, and the 
solidified region is then a rectangle in the potential 
plane. A boundary perturbation method will now be 
used to transfer conditions from Eta the upper dashed 
line. Then an analytical solution can be obtained 
by solving in the m&angular region. The quantity 
K = k/by, will be used as the perturbation parameter, 
so the solution is being perturbed from the analyti- 
cal solution that will be obtained for h -, co. The 
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X(Y, 0) and Y(Y, 0) are expanded into the forms Solutions for X,, Xi, Y,, Y, 

X(Y, 0) = X,(Y, 0))+KXi(Y, 0))+K2Xn(Y, 0)+ ... 

(21a) 

Y(Y,0) = Y,(Y,0)+KY~Y,0)+K2Xn(Y,0)+~~~. 

(21b) 

The boundary conditions for X, are known on all 
sides of the rectangle as summarized in Fig. 3 ; the 
X,(Y, 0) satisfies equation (16). The solution, obtained 
by separation of variables, is 

The X and Y along the upper dashed line (0 = 1) in 
Fig. 2 can also be expressed by a Taylor series 
expansion upward from the E boundary. Then after 
using equations (21a) and (21b) 

X,(Y,0)=A-Y+ 2 C,sin 
“=I 

sinh 
X 

(nn0/A) + sinh [nrc(2 - 0)/A] 

sinh (2nlr/A) 
(24) 

X,(Y, l)+KXdY’, l)+,.. = 

ax 

where 

X(Y,O,)+(l-O,)~W+... (22a) 
C, = a [X,(Y, 0)-(A-Y)] sin 

Y,(Y, l)+KYdY, l)+**. = 

Then Y, is found as the conjugate harmonic function 
subject to the boundary condition in Fig. 3 to yield 

Y(Y,0,)+(1-0,,.)% +.... (22b) 
W 

Since the cooled wall is along the horizontal axis in 
Fig. 1, Y(Y, 0,,) = 0. From the zeroth-order solution 
(when h + co), Y,(Y, 1) = 0. This yields the condition 
that aY,/aYl, = -ax,/a01, = 0 along the boundary 
(Y, 1). For h + co(K -+ 0) the 0 = 1 along the cooled 
wall, so that for small K the 0 will be perturbed from 
unity and will generally vary slowly with Y along fi. 
Hence in equation (20), (d0/dY)2 << 1 and can be 
neglected ; the accuracy of this approximation will be 
examined later by comparing numerical values of the 
solution at the wall to the exact boundary condition. 
Then equation (22b) becomes, after using aY/a01, 
= axlay,, 

Y,(Y,0) = l-0+ f c,cos 
n=l 

X 
cash (nn@/A)-cash [m(2-@)/A] 

sinh (2nn/A) 
’ (25) 

X0 and Y, are the exact solution for the cooled wall at t, 
(h + co). The conjugate harmonic solutions that will 
satisfy the boundary conditions for X, and q shown in 
Fig. 3, are 

x,=0, y,=-1. (26) 

As discussed later, these simple forms show that, to a 
first level of approximation, the convective cooling 
produces a displacement of the interface without 
changing its shape. 

KYdY,l)=(l-0,)g =-K. (23) 
W 

Along the cooled wall E, the Y = 0. Then from 
equations(21b),(25)and(26), thevariationof0,withY 
along the cooled wall can be found from 

This yields the boundary condition on the rectangle, 
y,(Y, 1) = - 1. 

K=l-0,+ f C,cos 
n=1 

The boundary conditions for X and Y are 
summarized in Fig. 3. 

cash (nrtcD,/A)-cash [nk(2-@,)/A] 
X 

sinh (2m/A) 
(27) 

neglecting terms in K2 and above. 
Since approximations have been made in obtaining 

the perturbation solution, the accuracy in satisfying the 
boundary conditions should be checked. The condition 
in equation (11) is satisfied approximately, but all of the 
other boundary conditions are satisfied exactly. To 
check equation (1 l), a Cauchy-Riemann relation was 
used to obtain the form 

ay -- 
ax, 

=; [1-0,(X)]. (28) 

From equation (27) the 0_,(Y) was found along the 
cooled wall and then X,,.(Y) = X(Y, 0,) was found 
using equations (21a), (24) and (26). Equation (28) was 
then evaluated along the cooled wall. For the results in 
the next section the error in satisfying the boundary 
condition was usually less then about 1%. In a few 
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extreme cases with large heating variations the error 
approached 4% along some small portions of the wall. 

RESULTS AND DISCUSSION 

The analytical results are in a general form with regard 
to the imposed heating distribution at the exposed 
phase-change interface. To illustrate the nature of the 
results, a heating variation is specified using a series 
expansion in Y, 

-1 

. (29) 

To obtain Q(X), the corresponding variation of X, with 
Y is obtained by integrating equation (15) 

XJP)=X,(Y,O)=A-Y+i i i&sin 7 . 
n-1 ( > 

(30) 

By a trial-and-error adjustment of the E, values, the 
Q(X,) variation can be approximately fitted to a desired 
incident heat flux variation. Another possibility is to 
insert the specified Q(X,) into equation (16) to obtain 
Y(X,) and hence X,(Y). The expression X,(Y) - A + Y 
is then expanded numerically in a Fourier sine series 
andcompared with the series in equation (30) to obtain 
the E,. From equations (24) and (30) the integral for C, 
yields C, = (A/nn)E,. Then from equations (21) and 

(24H27), 

X(Y, @) p= 
A 

sinh (MD/A) + sinh [n7$2 - @)/A] 
X 

sinh (2n7r/A) (314 

w, @I nnY -_=f-f+; E ;E”cos - 
A “-1 ( > A 

cash (m&/A) - cash [nn(2 - @)/A] 
X 

sinh (2ndA) 
-; (31b) 

X 
cash (nn@,,,/A)-cash [nn(2 --@,)/A] 

sinh (2m/A) 
. (32) 

To demonstrate the results in a simple yet 
informative way, the Q(X) is obtained for a one-term 
series variation where the E, = 0 for n 2 2. The 
resulting Q(X) distribution from equations(29) and (30) 
is shown in Fig. 4. For El = 0.4 the heating varies with 
x = 0 to a by a factor of more than two, so the 
corresponding results for interface shapes will show the 
effect of appreciable variations in heat flux. 

The interface shapes are readily calculated from 
equations (31a, b) by letting @ = 0. Results for K = 0 
are shown in Fig. 5 for E, = 0,0.2,0.4 and A = 1,2,4. 
The K = 0 results are the exact solution for h + 00, for 
which the cooled wall is at uniform temperature t,. The 
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FIG. 4. Heating distributions along solidification interface. 

solid thickness is in inverse relation to the imposed 
heating. For small A the solidified region is thick and 
equations (31) (with 0 = 0) show that the variation in 
shape about the mean thickness, l/A, approaches a 
limiting shape essentially equal to that for A = 1. For 
large A the solidified region is thin, and the shape 
approaches the configuration that would be predicted 
from a locally one-dimensional heat flow analysis. As a 
result, for A = 4, when E, = 0.4 the thickness changes 
by a factor of about two corresponding to a heating 
variation of about the same magnitude. 

When K is nonzero (h # co) the solution shows that 
the thickness changes in a simple way according to 
equation (3 1 b). The wall temperature is a variable along 
the cooled surface, and the analysis shows that, to the 
first level of approximation, the temperature variation 
does not affect the curvature along the free surface. The 
wall temperature variation is found as a function of Y 
from equation (32). If the Q,,(Y) values are then used in 

1.2~ A 

l.op+ 

FIG. 5. Interface shapes when cooled boundary is at uniform 
temperature, K = 0. 
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FIG. 6. Te.mperature distributions along convectively cooled 
Wall. 

equation (31a) the X(Y, Cp,,,) is found, and the wall 
temperature variation plotted as in Fig. 6. This is of 
interest to numerically check the convective boundary 
condition which is approximated by the perturbation 
solution. As described in the analysis, the boundary 
condition was satisfied with good accuracy for all the 
illustrative results given here, including the most 
extreme cases where E, = 0.4 and K = (x4. 

CONCLUDING REMARKS 

An analytical solution has been obtained for the 
response of a convectively cooled frozen layer to an 
imposed nonuniform radiative heating. For this type of 
heating, and with a high convective cooling heat 
transfer coefficient, an exact solution was obtained. 
This was accomplished by transforming the problem 
such that the physical coordinates were dependent 

variables of the temperature and a heat flow function; 
this transformed the solidified region into a rectangle in 
which an exact analytical solution can be found. When 
the convective cooling is not high, the transformed 
region deviates from being rectangular. A boundary 
perturbation was then used to transfer the boundary 
conditions to a fully rectangular region. The resulting 
approximate solution was found to satisfy the 
convective cooling boundary condition to within a very 
small error; the other boundary conditions, and the 
conduction equation in the region were satisfied 
exactly. 
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FORME DE LA FRONTIERE LIBRE D’UNE REGION CONGELEE PAR CONVECTION 

R&sum&-La forme bidimensionnelle d’une r&ion solidifiCe, telle que la couche gel&e, est ddterminte 
analytiquement pour la formation sur une plaque refroidie par convection. La forme non uniforme de la 
couche est produite par exposition B une distribution spatialement non uniforme d’inergie radiante. Pour un 
fort refroidissement par convection, la paroi refroidie approche une temp&ature uniforme et une solution 
exacte est obtenue pour la forme de la front&e libre. Pour un refroidissement moindre, la variation de 
temp6rature le long de la front&e refroidie est trait& par une mtthode de perturbation. Quelques exemples 
sont trait& pour montrer les effets du bhauffage non uniforme et de l’importance du transfert thermique 
convectif a la paroi refroidie. Seule une condition limite est approchie par la solution de perturbation; toutes 
les autres conditions aux limites sont satisfaites exactement. Les risultats du calcul don&s ici satisfont la 

candition limite approchC avec une trb faible erreur. 

FORM DER FREIEN BEGRENZUNG EINES KONVEKTIV GEKOHLTEN ERSTARRTEN 
GEBIETES 

Zusammenfassung-Die zweidimensionale stationtie Form eines erstarrten Gebietes-einer Eisschicht z. 
B.-das einseitig von einer konvektiv gekiihlten Platte begrenzt ist, wurde analytisch ermittelt. Die 
ungleichmii5ige Form der Schicht wird durch eine raumlich ungleichml5ige Bestrahlung erreicht. Bei starker 
konvektiver Kiihlung ergibt sich eine niiherungsweise gleichmii5ige Wandtcmperatur, so dal3 man eine exakte 
Liisung fiir die Form der freien Begrenzung erhiilt. Bei geringerer konvektiver Kiihlung wird der 
Temperaturverlauf entlang der gekiihlten Begrenzung durch ein Striirungsverfahren behandelt. Einige 
anschauliche Beispiele zeigen die Einfliisse der ungleichfi)tigen Heizung und des konvektiven 
Wiirmetransports an der gekiihlten Wand. Nur eine Randbedingung wird durch das Stiirungsverfahren 
angentiert, alle anderen Randbedingungen werden exakt angesetzt. Die vorgestellten Rechenergebnisse 

weichen nur sehr wenig von den angentiherten Randbedingungen ab. 
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QOPMA CBOBODHOR l-PAHkiqbI KOHBEKTWBHO OXJIAXflAEMOfi OWlACTM 
3ATBEPAEBAHBI 

Amoraum-llonyseHo amnmmecxoe BblpaXeeae anll 40pbtb1 nsyMepHofi ycTaHosmuIeiicn o6nacm 
3amepnenaww, xax, HanpeMep, CJIOR men, otipasymueroca Ha YOIWICTHBHO oxnarcnaeMol nnacrnae. 

HeOAHOpOAHOCTb CnOIl BbI3BaHa IlpOCTpaHCTBCHHOii HeOAHOpOAHOCTbIO paCIlpCAeneHHx nyWCTOii 

3Heprea,naAaIomeii Ha nnacrHHy.IlpH WETO KOHBeKTBBHOM oxna*AeHm TemepaTypa CTCHKH OAHO- 

pOAHaX nOnyYCH0 TOYHOe peIIIeHae AJIx CBO6OAHOi-4 TPPHHLWI. B TOM Cny'tae, EOTAa KOHBeKTNBHbIfi 

nepeHoc Tenna COCTaBnlleT mimb 'IBCTb nonHol sHepreH, W3MeHeHHe TeMnepaTypbI BAOnb rpaHwub1 

HCCneAyCTCR MCTOAOM BO3MyIIleHAk npHBeAeHb1 HJIJIhXTpaTllBHbIe IlpHMCpbl, KOTOpbIC IIOKa3bIBaIOT 

nn~~n~e~eo~~opon~oro~arpe9a~aBene~e~y~o~eex~~n~oro~ennonepenOcayoxnarc~ae~oiicrea~~. 
ToAbKO OAHO rpaHWHOe yCnOBlle aIIIIpOKCHMHpyeTCX IIpSl ~LLICHHH MeTOAOM B03MYlWHHii, BCe 

OCTanbHbIe TO'iHO yAOBneTBO~HbI.YCTaHOBneHO,YTO pe3ynbTaTbI paC'feTOB yAOBneTBOpffIOT npu6ne- 
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