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Abstract—The two-dimensional steady-state shape of a solidified region, such as a frost layer, was determined
analytically for formation on a plate that is convectively cooled. The nonuniform shape of the layer is produced
by exposure to a spatially nonuniform distribution of radiant energy. For high convective cooling the cooled
wall approaches a uniform temperature, and an exact solution is obtained for the free boundary shape. For a
lesser amount of convective cooling, the variation in temperature along the cooled boundary is treated by a
boundary perturbation method. Some illustrative examples are given that show the effects of nonuniform
heating and the magnitude of convective heat transfer at the cooled wall. Only one boundary condition is
approximated by the perturbation solution ; all of the other boundary conditions are satisfied exactly. The
calculated results given here were found to satisfy the approximate boundary condition within a very small
error.

INTRODUCTION

AN INTERESTING class of problems are those involv-
ing unknown, or ‘free’ boundaries. Steady-state and
moving free boundaries have been studied in con-
nection with solidification and melting processes [1],
flows in porous media [2], design of tool shapes for
electrochemical machining [3], prediction of shapes of
jets and bubbles [4], as well as many other types of
inverse problems. In the last decade there has been an
increased effort toward the development of numerical
inverse methods. An example is in ref. [5] where a
numerical solution was obtained for a steady-state free
boundary solidification problem that had been solved
analytically in ref. [6]. Since the presence of an
unknown boundary usually provides difficulties in
both numerical and analytical methods, advances in
either of these approaches, or in their combination, are
welcome additions to the development of this area.
Analytical solutions provide a very helpful insight into
free boundary behavior and provide a comparison for
numerical results.

In the present work a few mathematical ideas will be
combined to obtain the steady response of a solidified
layer to imposed, spatially variable, radiative heating
along one face. The other side of the layer is being
cooled by convection, and thus the temperature
distribution along this boundary is unknown and will
be determined in conjunction with finding the free
boundary shape. The analytical procedure involves
inverting the problem so that the physical coordinates
are to be found as dependent variables of the
temperature and a heat flow function orthogonal to the
constant temperature lines. This transformation maps
the solidified region into a region that is approxi-
mately rectangular ; if the cooled wall were at uniform
temperature the region would be a rectangle. A
boundary perturbation method [7] was applied to

transfer the conditions to a fully rectangular shape, and
an analytical solution was then obtained.

The physical system is most easily described by
referring to Fig. 1(a). The solidified region could be a
frost layer formed on a cooled surface in the presence of
incident radiation, or a layer could be machined by
application of radiative energy. Another interpretation
would be finding the shape of a layer that is to be
controlled at a uniform surface temperature while
exposed to nonuniform heating and being convectively
cooled at the other surface. A particular problem of this
type was solved by conformal mapping in ref. [8].
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(b) Dimensionless coordinates.
Fi1G. 1. Solidified region on convectively cooled boundary.
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A dimensionless length and dimensionless
parameter, (aqr,ma)/[k(tf - tc)] = a/ym

a  width of solidified region

C,, E, coefficients in Fourier series solution

h  convective heat transfer coefficient at
cooled boundary

K dimensionless parameter, k/hy,,

k  thermal conductivity of solidified material

n  normal to solidification interface,
N=n/y,

Q dimensionless heat flux, q,/g;

g, incident radiant heat flux; g, , integrated
mean value of g,

NOMENCLATURE

Yy, i zeroth- and first-order terms in expansion
of Y(¥, D)
Ym thickness, k(t;—t.)/ag,, .

Greek symbols
o radiant absorptivity of surface
6 angle between interface normal and y-axis
@ potential function, (t;—£)/(t;—t.)
¥ heat flow function orthogonal to ®

S dimensionless coordinate along Subscripts

solidification interface ¢ atcoolant temperature
t  temperature f  atsolidification temperature
X, X; zeroth- and first-order terms in m mean value

expansion of X(¥, @) r radiant
x, y coordinates in physical plane; X = x/yp,, s  at solidification interface

Y =y/Vn w  at cooled wall of layer.

ANALYSIS provide both the temperature and its normal derivative

Problem description

The solidified region is shown in Fig. 1(a). It has a
shape that depends upon an incident distribution of
radiant energy that varies along the x-direction. The
absorbed energy is conducted through the solidified
region and removed from the cooled boundary by
convection with a constant heat transfer coefficient to a
coolant at t.. The side walls can be either insulated or
represent symmetry planes for a periodic variation of
q,(x). These conditions provide the following boundary
conditions. At the side boundaries,

ot
—=0 x=0,a y>0. 1)
ox
At the solidification interface,
t=t )]
ot
k— = aqx) cos 6. (3)
én

At the cooled boundary,
ot
k— = h[t,(x)—1.]. @
dy

Within the solidified region the heat conduction
equation applies
ot o
:3?+6_))2 =0 )

It is noted that the boundary conditions are
overspecified in the sense that equations (2) and (3)

along one boundary. It is the shape of the solidification
interface that is unknown. The convective condition,
equation (4), contains the wall temperature distribution
which is also an unknown and will be determined
during the analytical solution that follows.

Toplace the equations in dimensionless form,a mean
incident heat flux is defined as

1 (e
Geom =~ J' qr(x) dx. (6)
ajo

If the incident heating is uniform at g, ,, the solidified
layer will have a uniform thickness. When the
convection coefficient h — oo thent,, — t and thislayer
thickness is

_ k(tf - tc)
T agm

This will be used as a reference dimension in what
follows.

M

m

Region in potential plane

The analysis is carried out by mapping the solidified
region into a potential plane. First the region is placed
in dimensionless form as shown in Fig. 1(b). A
temperature potential function is defined by the ratio ®
= (t;—t)/(t;—t.); since t, <t <t then 0<P <L
Then using the quantities defined in the Nomenclature,
equation (1) becomes along the side walls

oo

= =0,4 Y>0. 8
aXoxo, >0 8
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Equations (2) and (3} are

D=0 ©)
o
—— = , 1
N Q(X)cos 0 (10)
At the convectively cooled wall
o 1
— | ==[1-0X)]. 11
57, = (1~ 0] (1
The heat conduction equation becomes
3o 80
— + =5 =0 12
ax? * Y? 0 (12)

Since heat flow is normal to constant temperature
lines, a heat flow function ¥ can be defined, where lines
of constant ¥ and @ form an orthogonal grid. Each pair
of ¥ lines bounds a fixed amount of heat flow. Now
consider a potential plane as shown in Fig, 2. Since
@ = Oalong the solidification boundary, the boundary
34 is along the W-axis. Along the cooled wall the ®
is an unknown variable that will be between 0 and
1; hence the curve 12 has an unknown shape. When
h — oo the cooled wall will be at ¢, which gives the
upper limit dashed boundary along which @, = 1.
The boundaries 14 and 23 have no heat crossing
them ; hence they are along constant heat flow lines.

The analysis will now proceed by letting X, Y be
dependent variables of ¥, ®. Since ¥, ® are analytic
functions of X, Y, then X, Y are conjugate harmonic
functions of ¥, @ and satisfy,

AN

w7 T e

=0, where ({=X or Y (13)
To solve these equations the boundary conditions for
X and/or Y are needed for theregion in Fig. 2. Along 14,

X =0and along 73, X = A. On the interface §,

0¥ 0¥ 0§ O¥ ON 14
x|, (as X @oN ax); (14
Then along 34, which is at constant temperature, the
Cauchy-Rieman equations give ®/6N = —oW/oS
and 0¥/0N = 0®/0S = 0.Itfollows that with 4S/6X =
—1/cos 6, and by use of equation (10),

ik g
5], =~ ) 1)
rq‘w’l
2/\J:fﬂ.—fg’__l
XA~ ~X 0
A
® g-w
3 X & 4
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-y o a0 ax

Fi1G. 2. Region in potential plane.
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Letting¥ = Oat X = A, thisintegratesto givealong 34,

A
¥(X) = j 2(X)dXx. (16)
X
Then by use of equation (6) placed in dimensionless
form, the maximum W is
A
Yo = J 0(X)dX = A. 1
o
Thus the width of the region in Fig. 2 is 4. Equation (16}
provides the boundary condition between X and ¥
along 34.
Next the boundary condition will be considered
along the cooled boundary 12. A heat flow channel

between two almost equal ¥ lines is shown shaded in
Fig. 1(b). A heat balance on this channel gives

ag(x)AX], = hAX|,[t(x)—t.].

Equation(15)isused on the LHS and the resultis placed
in dimensionless form to obtain (note from the shaded
region mapped into Fig. 2 that AW}, = AY¥|,),

AX|[1-0,(X)]. (18)

Along the cooled wall the X is a function of both W and
@ so that

—KA¥|, = —KAY|, =

X 1126
dx i ( ¥, d¥+ — 70 dd>)w. (19)
Also along the wall, Y is zero so that
Y i) 4
AW+ —| =0,
(a\v. ¥+ 3 wdd))w 0

Applying the Cauchy-Riemann conditions yields
along w,

X} ox| do
0y V¥|pd¥’
This is substituted into equation (19) to obtain

dx|  fox do 2+ i
d¥|, ~ |0¥|s| \a¥ .
Then the boundary condition equation (18) becomes
X on\?
~K={= =] +1 - :
<= bl (5p) +1 ]} oo e
Perturbation analysis

The curved upper boundary 12in the potential plane
inFig. 2hasan unknownshape. When s — oo thiscurve
becomes the upper dashed straight line, and the
solidified region is then a rectangle in the potential
plane. A boundary perturbation method will now be
used to transfer conditions from 12 to the upper dashed
line. Then an analytical solution can be obtained
by solving in the rectangular region. The quantity
K = k/hy,, will be used as the perturbation parameter,
so the solution is being perturbed from the analyti-
cal solution that will be obtained for h— . The
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X(¥, ®) and Y(¥, D) are expanded into the forms

X(¥, 0) = Xo(¥, O)+ KX[¥, ®)+ K X (¥, D)+ -
(21a)
Y(P, D) = Yo(¥, ®)+ KY(¥, D)+ K2X (¥, D)+ -

(21b)

The X and Y along the upper dashed line (® = 1)in
Fig. 2 can also be expressed by a Taylor series
expansion upward from the 12 boundary. Then after
using equations (21a) and (21b)

Xo¥, )+ KX(¥, )+ =

oX
X(¥,,)+(1 —<I>w)5&)— +--- (22a)

Yo, D+ KY{¥, )+ =

ay
Y(¥, 0,)+(1-®y) 7 +- (22b)

Since the cooled wall is along the horizontal axis in
Fig. 1, Y(¥, @,) = 0. From the zeroth-order solution
(when h — ), Yo(¥, 1) = 0. This yields the condition
that 6Y,/0Wle = —0X /0@y = O along the boundary
(P, 1). For h —» oo(K — 0) the ® = 1 along the cooled
wall, so that for small K the ® will be perturbed from
unity and will generally vary slowly with ¥ along 12.
Hence in equation (20), (d®/d¥)® « ! and can be
neglected ; the accuracy of this approximation will be
examined later by comparing numerical values of the
solution at the wall to the exact boundary condition.
Then equation (22b) becomes, after using 9Y/d®|,
= 0X/0¥,,

dx

KY(¥, 1) = (1-0,) 5| =~K. (23)

This yields the boundary condition on the rectangle,
(P, 1)=—1.

The boundary conditions for X and Y are
summarized in Fig, 3.

ax
Xq = A 3 Xp=0 X[+ 0
X a0 T X 107
NPT T 2 S it 1,
\ -1 ! \ ~ o1 |//
Xo-0
X, 0,8 I~ Xo X1y, @)
.
Yoo exw, 0 Yo xeo
//—Y0=0 /’-YI 1

Fi16G. 3. Boundary conditions for components of X('¥, ®) and
Y(¥, O).
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Solutions for Xy, X, Yo, Y;

The boundary conditions for X, are known on all
sides of the rectangle as summarized in Fig. 3; the
X o(¥, 0) satisfies equation (16). The solution, obtained
by separation of variables, is

Y
A— ‘P+Z C, sm<m:1 )

n=1

y {sinh (nn®/A) +sinh [nn(2 — D)/A] } 24)

X(W,0) =

sinh (2nn/A)

where
J [X (¥, 0)—(4—P)] s1n( )d‘l’

Then Y, is found as the conjugate harmonic function
subject to the boundary condition in Fig. 3 to yield

v
Y, (¥, )= 1 -0+ Z C, cos<m; )

n=1

cosh (nn®/A)—cosh [nn(2 —®)/A]
X { sinh (2n7/ A) } (25)

X, and Y, are the exact solution for the cooled wall at ¢,
(h — o). The conjugate harmonic solutions that will
satisfy the boundary conditions for X; and ¥;shown in
Fig. 3, are

X;=0, §=-1 (26)

As discussed later, these simple forms show that, to a
first level of approximation, the convective cooling
produces a displacement of the interface without
changing its shape.

Along the cooled wall 12, the Y= 0. Then from
equations (21b),(25)and (26), the variation of @, with ¥
along the cooled wall can be found from

2
K=1-0 +ZCcos<m:1 )

n

cosh (nn®,,/A)—cosh [nn(2— (Dw)/A]} )
sinh (2nn/A) (

neglecting terms in K2 and above.

Since approximations have been made in obtaining
the perturbation solution, the accuracy in satisfying the
boundary conditions should be checked. The condition
inequation (11)issatisfied approximately, but all of the
other boundary conditions are satisfied exactly. To
check equation (11), a Cauchy—Riemann relation was
used to obtain the form

lik'e
oX|,

From equation (27) the ®(¥) was found along the
cooled wall and then X (¥) = X(¥, ®,) was found
using equations (21a), (24) and (26). Equation (28) was
then evaluated along the cooled wall. For the results in
the next section the error in satisfying the boundary
condition was usually less then about 1%. In a few

- < [1-0,00). 28)
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extreme cases with large heating variations the error
approached 4% along some small portions of the wall.

RESULTS AND DISCUSSION

The analytical results are in a general form with regard
to the imposed heating distribution at the exposed
phase-change interface. To illustrate the nature of the
results, a heating variation is specified using a series
expansion in P,

QW) = (1— i E, cos _,%)—1'

n=1

(29)

To obtain Q(X), the corresponding variation of X with
¥ is obtained by integrating equation (15)

A 21 , [(nn¥
X,(‘I’)=X0(‘P,0)=A——‘P+;"§‘1;E,,sm(7>.
(30)

By a trial-and-error adjustment of the E, values, the
Q(X,) variation can be approximately fitted to a desired
incident heat flux variation. Another possibility is to
insert the specified Q(X,) into equation (16) to obtain
¥(X,) and hence X (¥). The expression X (¥)—A+¥
is then expanded numerically in a Fourier sine series
and compared with the series in equation (30) to obtain
the E,. From equations (24) and (30) the integral for C,
yields C, = (A/nn)E,. Then from equations (21) and
(24)27),

X¥o) ¥ 121  [m¥
Y T+ E el
A Tta i "Sm(A>

sinh (nn®/A) +sinh [nn(2 — ®)/A]
% { sinh (2n/4) } (31a)

YP, D) 1 121 nn'¥
A A Z n Z nEne ( A >
cosh (nn®/A)—cosh [nn(2—®)/A] K
x { sinh (2n7/4) }_ a G

421
K=1-0,+= Z -E,c
T ,=1N

)

) {cosh (nn®,/4)—cosh [nn(2—®,)/ A]} 32)

sinh (2nn/A)

To demonstrate the results in a simple yet
informative way, the Q(X) is obtained for a one-term
series variation where the E,=0 for n> 2. The
resulting Q(X) distribution from equations (29) and (30)
is shownin Fig. 4. For E; = 0.4 the heating varies with
x =0 to a by a factor of more than two, so the
corresponding results for interface shapes will show the
effect of appreciable variations in heat flux.

The interface shapes are readily calculated from
equations (31a, b) by letting ® = 0. Results for K =0
are shownin Fig. 5for E;, = 0,0.2,04and 4 = 1,2,4.
The K = Qresults are the exact solution for h — oo, for
which the cooled wall is at uniform temperature ¢_. The

HMT 29:2-J
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FiG. 4. Heating distributions along solidification interface.

solid thickness is in inverse relation to the imposed
heating. For small A the solidified region is thick and
equations (31) (with ® = 0) show that the variation in
shape about the mean thickness, 1/4, approaches a
limiting shape essentially equal to that for A = 1. For
large A the solidified region is thin, and the shape
approaches the configuration that would be predicted
from a locally one-dimensional heat flow analysis. As a
result, for A = 4, when E, = 0.4 the thickness changes
by a factor of about two corresponding to a heating
variation of about the same magnitude.

When K is nonzero (h # o0) the solution shows that
the thickness changes in a simple way according to
equation (31b). The walltemperatureis a variable along
the cooled surface, and the analysis shows that, to the
first level of approximation, the temperature variation
does not affect the curvature along the free surface. The
wall temperature variation is found as a function of ¥
from equation (32). If the @, (¥) values are then used in

12— A

| <

F1G. 5. Interface shapes when cooled boundary is at uniform
temperature, K = 0.
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F1G. 6. Temperature distributions along convectively cooled
wall.

equation (31a) the X(¥, ®,) is found, and the wall
temperature variation plotted as in Fig. 6. This is of
interest to numerically check the convective boundary
condition which is approximated by the perturbation
solution. As described in the analysis, the boundary
condition was satisfied with good accuracy for all the
illustrative results given here, including the most
extreme cases where E; = 0.4 and K = 0.4,

CONCLUDING REMARKS

An analytical solution has been obtained for the
response of a convectively cooled frozen layer to an
imposed nonuniform radiative heating. For this type of
heating, and with a high convective cooling heat
transfer coefficient, an exact solution was obtained.
This was accomplished by transforming the problem
such that the physical coordinates were dependent

R. SIEGEL

variables of the temperature and a heat flow function ;
this transformed the solidified region into a rectangle in
which an exact analytical solution can be found. When
the convective cooling is not high, the transformed
region deviates from being rectangular. A boundary
perturbation was then used to transfer the boundary
conditions to a fully rectangular region. The resulting
approximate solution was found to satisfy the
convective cooling boundary condition to within a very
small error; the other boundary conditions, and the
conduction equation in the region were satisfied
exactly.
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FORME DE LA FRONTIERE LIBRE D’'UNE REGION CONGELEE PAR CONVECTION

Résumé—La forme bidimensionnelle d’une région solidifiée, telle que la couche gelée, est déterminée
analytiquement pour la formation sur une plaque refroidie par convection. La forme non uniforme de la
couche est produite par exposition & une distribution spatialement non uniforme d’énergie radiante. Pour un
fort refroidissement par convection, la paroi refroidie approche une température uniforme et une solution
exacte est obtenue pour la forme de la frontiére libre. Pour un refroidissement moindre, la variation de
température le long de la frontiére refroidie est traitée par une méthode de perturbation. Quelques exemples
sont traités pour montrer les effets du chauffage non uniforme et de I'importance du transfert thermique
convectif 4 la paroi refroidie. Seule une condition limite est approchée par la solution de perturbation ; toutes
les autres conditions aux limites sont satisfaites exactement. Les résultats du calcul donnés ici satisfont la
condition limite approchée avec une trés faible erreur.

FORM DER FREIEN BEGRENZUNG EINES KONVEKTIV GEKUHLTEN ERSTARRTEN
GEBIETES

Zusammenfassung —Die zweidimensionale stationdre Form eines erstarrten Gebietes—einer Eisschicht z.
B.—das einseitig von einer konvektiv gekiihlten Platte begrenzt ist, wurde analytisch ermittelt. Die
ungleichmiBige Form der Schicht wird durch eine raumlich ungleichméBige Bestrahlung erreicht. Bei starker
konvektiver Kiihlungergibt sich eine ndherungsweise gleichmiBige Wandtemperatur, so dal maneine exakte
Loésung fiir die Form der freien Begrenzung erhilt. Bei geringerer konvektiver Kiihlung wird der
Temperaturverlauf entlang der gekiihlten Begrenzung durch ein Strorungsverfahren behandelt. Einige
anschauliche Beispicle zeigen die Einfliisse der ungleichformigen Heizung und des konvektiven
Wirmetransports an der gekiihlten Wand. Nur eine Randbedingung wird durch das Storungsverfahren
angenihert, alle anderen Randbedingungen werden exakt angesetzt. Die vorgesteliten Rechenergebnisse
weichen nur sehr wenig von den angendherten Randbedingungen ab.
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®OPMA CBOBOJHOM I'PAHULILI KOHBEKTUBHO OXJIAXIAEMOI OBJIACTH
3ATBEPAEBAHHU A

Annoranns—ITonyueHo aHaNATHYECKOE BhIpaxenue L1 GOPMBI ABYMEPHO#H ycTaHOBHBIUeHcs obnacTu
3aTBEpIEBAHHUSA, KaK, HATIPUMED, CJI0A HHed, 06pa3ylolerocs Ha KOHBEKTHBHO OXJaXkOaeMOH IIacTHHe.
HeoaHOPOAHOCTL CJIOS BbI3BaHA NPOCTPAHCTBEHHOH HEOJHOPONHOCTBIO PacNpPCIC/ICHAA JIyYHCTOH
JHEPTHH, Najalowei Ha m1acTuHy. ITpH YHCTO KOHBEKTHBHOM OXJIAXICHHH TEMIEpATypa CTEHKH OIHO-
poanas. ITonyyeso TouHoe pelenue s cBoGOAHOM rpaHuubl. B TOM ciiyuae, KOria KOHBEKTHBHBIA
fIEpEHOC Telula COCTABIAET JIMIIb YacTh IOJHOW JHEPTHH, H3IMEHEHHe TEMIMEPATYPbl BAOJb IPaHHUbL
HCCIIEYETCA METOAOM BO3MYIUeHHH. TIpuBeneHEl HIUTIOCTPATHBHBIE NPHMEPBI, KOTOPLIE [IOKA3BIBAKOT
BJIHAHHE HEOAHOPOJHOTO HArpeBa Ha BENTHYHHY KOHBEKTHBHOTO TEIUIONEPEHOCA Y OXJIAXKAAEMON CTEHKH.
Tonpko OOHO TPAHMYHOE YCIOBHE ANMPOKCHMHPYETCR MpPH DELUEHAH METOAOM BO3MYILUEHHH, BCeE
OCTaJIbHBIE TOYHO YAOBJIETBOPEHBL. YCTAHOBJIEHO, YTO PE3YJIbTATHI PACHETOB YIOBNETBOPAIOT NPHEIIH-
>KEHHOMY IDAaHMYHOMY YCJIOBHIO C O4€HBb HEBOJIBLIION MOr PEUIHOCTEIO.
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